

Conditional Diffusion Models for OOD Detection

Author: Ahmed Mohammed

Institute for Machine Learning – Supervisor: Sepp Hochreiter, Claus Hofmann

Introduction & Motivation

Problem: Traditional classifiers struggle to recognize out-of-distribution (OOD) samples, leading to inaccurate and overconfident predictions on unseen data

Motivation: Conditional diffusion models can learn rich data representations and measure reconstruction quality

Approach: Leverage reconstruction error principle - in-distribution samples reconstruct better than OOD samples

Key Insight: Class-conditional generation enables precise anomaly detection through comparative reconstruction errors

Methodology Details

Diffusion Model Architecture:

- UNet2D is conditioned on class labels
- Sample size: 32x32, Embedding dim: 128
- Block channels: [128, 256, 512, 512]
- DDPM scheduler with linear β -schedule

Training Loss: Reconstruction loss between predicted and actual noise

$$L = |\epsilon - \epsilon_{\theta}(x_t, t, c)|^2$$

OOD Detection Process ¹:

- For test image x , run multiple trials (10 iterations)
- Add noise: $x_t = \sqrt{\bar{\alpha}_t} x + \sqrt{1 - \bar{\alpha}_t} \epsilon$
- Predict noise for each class: $\epsilon_{\theta} = f_{\theta}(x_t, t, c)$
- Compute MSE error per class
- Classification via softmax over negative errors

Experiment Setup

Dataset:

CIFAR-10: Airplane class (Class 0)

- In-Distribution: Airplane class (Class 0)
- Out-of-Distribution: All other 9 classes (Class 1)
- Training: 5,000 airplane images + 5,000 mixed other classes
- Validation: 1,000 airplane + 1,000 other classes

Training Configuration:

- Batch size: 32 | Epochs: 500
- Optimizer: AdamW (lr=1e-4, wd=1e-4)
- Scheduler: Cosine annealing
- Sampling: Weighted (class balanced)

References

- [1] Bowen Li, Robin Rombach, Vladlen Koltun, and Luke Zettlemoyer. *Your Diffusion Model is Secretly a Zero-Shot Classifier*. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
- [2] Andreas Kirsch, Joost van Amerongen, and Yarin Gal. *Denoising Diffusion Models for Out-of-Distribution Detection*. In Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.
- [3] Daniel Smolyar, Nicholas Carlini, and Dhruv Madeka. *Intriguing Properties of Generative Classifiers*. In Proceedings of the 41st International Conference on Machine Learning (ICML), 2024.

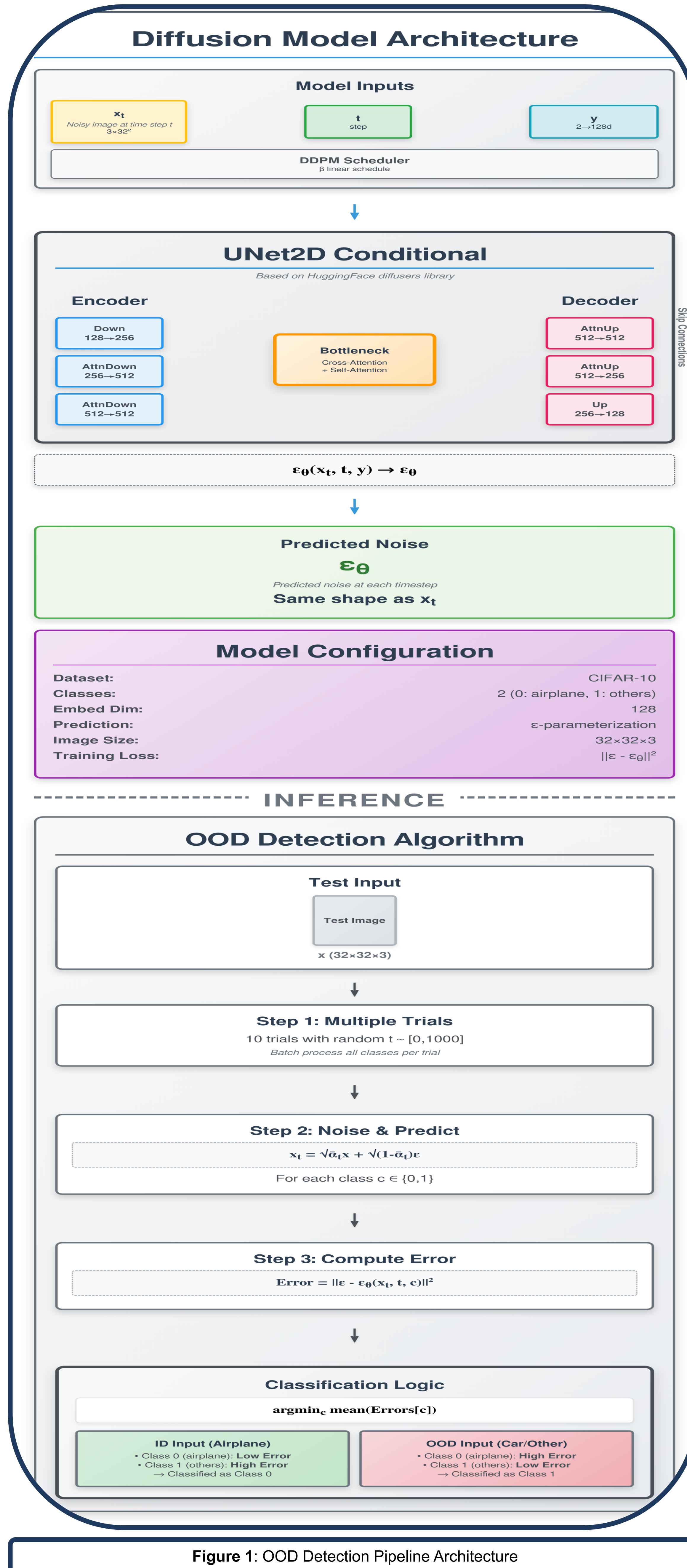


Figure 1: OOD Detection Pipeline Architecture

Results

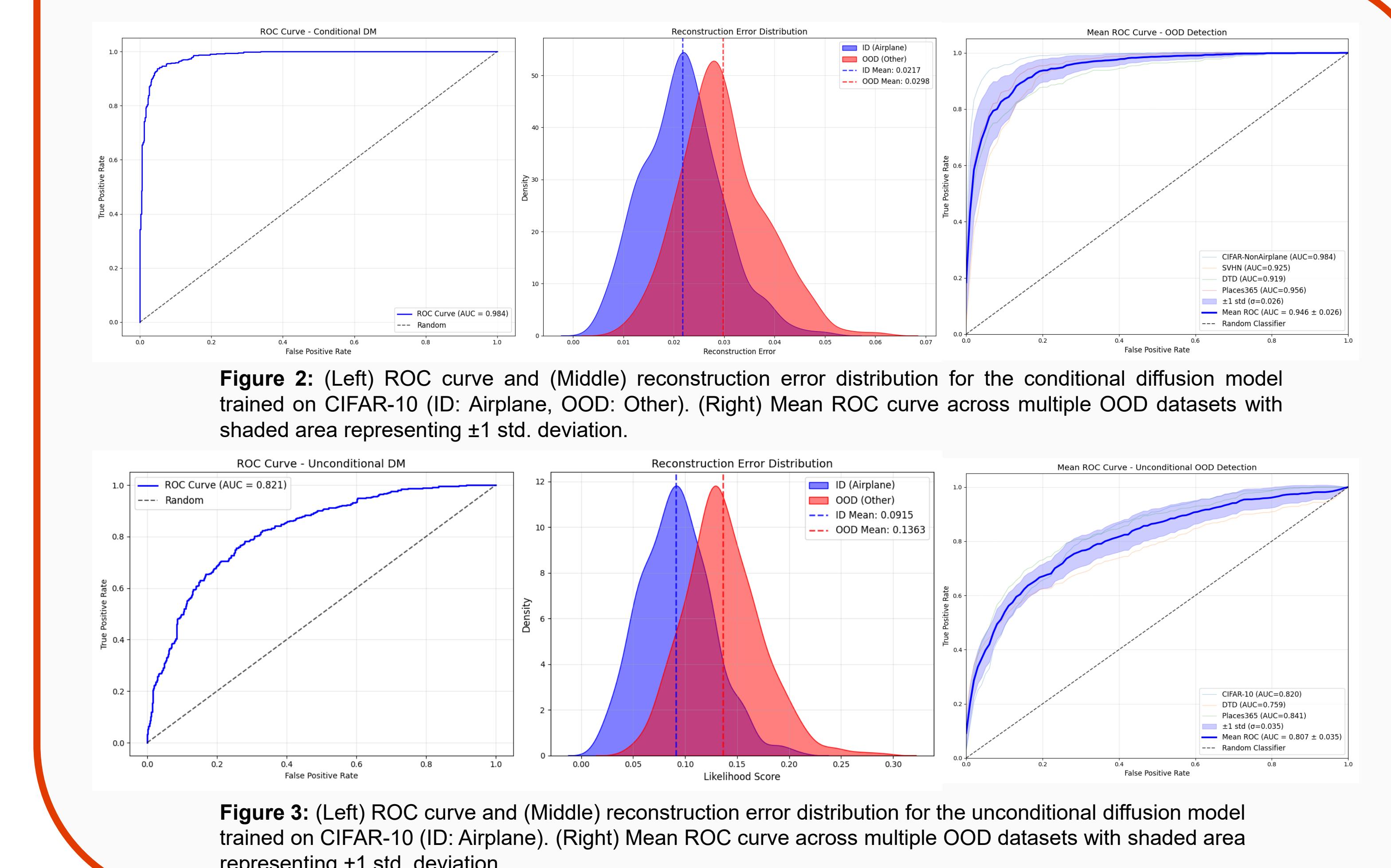


Figure 3: (Left) ROC curve and (Middle) reconstruction error distribution for the unconditional diffusion model trained on CIFAR-10 (ID: Airplane). (Right) Mean ROC curve across multiple OOD datasets with shaded area representing ± 1 std. deviation.

Performance Comparison

OOD Datasets	Conditional Diffusion (AUROC%)	Unconditional Diffusion (AUROC%)
Cifar-10 (Airplane VS Non-Airplane)	98.40	82.10
Places365	95.60	84.10
SVHN	92.50	61.60
DTD	91.90	75.90

Conclusion & Future Work

Conclusion:

- Conditional diffusion models achieve significantly higher AUROC scores for OOD detection (98.40 vs 82.10)
- Reconstruction error provides reliable anomaly scoring
- Method generalizes across multiple datasets (CIFAR-10, SVHN, etc.)
- Class conditioning significantly improves detection accuracy

Future Work:

- Extend to multi-class OOD detection beyond binary classification
- Investigate other noise schedules and sampling strategies
- Apply to high-resolution datasets and real-world applications
- Develop computational efficiency improvements for deployment
- Explore uncertainty quantification in reconstruction errors