Conditional Diffusion Models for OOD Detection

Introduction & Motivation

Problem: Traditional classifiers struggle to recognize out-of-distribution (OOD) samples,

leading to inaccurate and overconfident predictions on unseen data

Motivation: Conditional diffusion models can learn rich data representations and measure

reconstruction quality

Approach: Leverage reconstruction error principle - in-distribution samples reconstruct

better than OOD samples

Key Insight: Class-conditional generation enables precise anomaly detection through

comparative reconstruction errors

Methodology Details

Diffusion Model Architecture: Notations:

 Sample size: 32x32, Embedding dim: 128

e UNet2D is conditioned on class labels

 Block channels: [128, 256, 512, 512] X
e DDPM scheduler with linear B-schedule
Xt
Training Loss: Reconstruction loss between predicted
and actual noise €
2
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OOD Detection Process *: -
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For test image x, run multiple trials (10 iterations)

Add noise: x; = \/?tx +\/(1 — Q)€

Predict noise for each class: €5 = f 8(x;,t, )
Compute MSE error per class

Classification via softmax over negative errors
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Experiment Setup

Dataset: CIFAR-10
* In-Distribution: Airplane class (Class 0)
e Qut-of-Distribution: All other 9 classes (Class 1)
* Training: 5,000 airplane images + 5,000 mixed other classes
e Validation: 1,000 airplane + 1,000 other classes

Training Configuration:
 Batchsize: 32 | Epochs: 500
 Optimizer: AdamW (lr=1e-4, wd=1e-4)
* Scheduler: Cosine annealing
e Sampling: Weighted (class balanced)
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Diffusion Model Architecture
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Dataset: CIFAR-10
Classes: 2 (0: airplane, 1: others)
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OOD Detection Algorithm

Test Input
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Step 1: Multiple Trials
10 trials with random t ~ [0,1000]

Batch process all classes per trial

\

Step 2: Noise & Predict

Xg = '\l(_X.tX -+ V(l—(_lt)ﬁ

For each class c € {0,1}

¥
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ep 3: Compute Error

Error = lle - £(x¢, t, O)II?

Classification Logic

argming mean(Errors|c])

ID Input (Airplane)

—> Classified as Class O

OOD Input (Car/Other)

= Class O (airplane): Low Error = Class O (airplane): High Error
= Class 1 (others): High Error - Class 1 (others): Low Error

—> Classified as Class 1
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Figure 1: OOD Detection Pipeline Architecture
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Figure 2: (Left) ROC curve and (Middle) reconstruction error distribution for the conditional diffusion model
trained on CIFAR-10 (ID: Airplane, OOD: Other). (Right) Mean ROC curve across multiple OOD datasets with
shaded area representing 1 std. deviation.
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Figure 3: (Left) ROC curve and (Middle) reconstruction error distribution for the unconditional diffusion model
trained on CIFAR-10 (ID: Airplane). (Right) Mean ROC curve across multiple OOD datasets with shaded area
representing £1 std. deviation.

Performance Comparison

Conditional Diffusion |Unconditional Diffusion

OOD Datasets

Cifar-10 (Airplane VS

(AUROC%) (AUROC%)

Non-Airplane) 98.40 82.10
Places365 95.60 84 10
SVHN 92.50 61.60
DTD 91.90 75.90

Conclusion & Future Work

Conclusion:

Conditional diffusion models achieve significantly higher AUROC scores for OOD
detection (98.40 vs 82.10)

Reconstruction error provides reliable anomaly scoring

Method generalizes across multiple datasets (CIFAR-10, SVHN, etc.)

Class conditioning significantly improves detection accuracy

Future Work:

Extend to multi-class OOD detection beyond binary classification
Investigate other noise schedules and sampling strategies

Apply to high-resolution datasets and real-world applications
Develop computational efficiency improvements for deployment
Explore uncertainty quantification in reconstruction errors
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